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A Riemann solver and upwind methods for a two-phase �ow
model in non-conservative form
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SUMMARY

We present a theoretical solution for the Riemann problem for the �ve-equation two-phase non-conser-
vative model of Saurel and Abgrall. This solution is then utilized in the construction of upwind non-
conservative methods to solve the general initial-boundary value problem for the two-phase �ow model
in non-conservative form. The basic upwind scheme constructed is the non-conservative analogue of
the Godunov �rst-order upwind method. Second-order methods in space and time are then constructed
via the MUSCL and ADER approaches. The methods are systematically assessed via a series of test
problems with theoretical solutions. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: two-phase �ow; non-conservative form; hyperbolic equations; Riemann solver; non-
conservative upwind methods

1. INTRODUCTION

Mathematical modelling of multi-phase-�ow phenomena is currently a very active �eld of
research. The mathematical models have application in many �elds, such as De�agration to
Detonation Transition (DDT) in combustion theory, Self-propagating High-temperature Syn-
thesis (SHS), nuclear engineering, environmental disciplines, the oil industry, and many more.
The underlying physics of the problems is complex and the aim of the mathematical models
is to account for the behaviour of at least two phases or �uids and the interactions due to
exchange of mass, momentum and energy. A large class of models are based on the continuum
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276 C. E. CASTRO AND E. F. TORO

theory and make use of average quantities [1–4] inside each control volume allowing us to
know the amount of each phase in the volume but not the position of the interphases. Models
in current use, when neglecting dissipative e�ects, consist of non-linear systems of �rst-order
partial di�erential equations along with closure conditions. There are at present two important
issues regarding these models. The �rst of these refers to the hyperbolic or non-hyperbolic
character of the equations. It is now established that hyperbolicity is an essential requirement
to have well-posedness [1]. The second issue concerns the conservative or non-conservative
character of the equations, that is to say, whether the governing equations have, or not, a
known conservation-law form in the mathematical sense. In the absence of a conservative
form of the equations one speaks of non-conservative model, even though in the derivation
of the equations one invokes physical conservation principles. Mathematically, shock waves
and associated Rankine–Hugoniot conditions can be de�ned once a conservative form of the
equations exists.
Almost all the models in the literature have non-conservative form due to the interface

interaction. Examples include the Saurel–Abgrall model [5] and the Baer–Nunziato model [6].
See also Reference [1]. We note here that conservative hyperbolic models have recently been
proposed [7], which are formulated in terms of parameters of state for the mixture. Given
that most models in current use are in non-conservative form, it is of interest to develop
numerical methodology that can be applied to solve such systems of hyperbolic equations in
non-conservative form.
In this paper we consider the hyperbolic non-conservative model of Saurel and Abgrall

[5]. We solve the Riemann problem for this �ve-equation model approximately assuming
that all non-linear characteristic �elds give rise to rarefaction waves. We call the approxi-
mation, the four-rarefaction approximation, and is an extension of the two-rarefaction ap-
proximation in single-phase gas dynamics [8]. The solution has close form and is actually
exact in the case in which the Riemann problem has four rarefaction waves. For other cases
our theoretical solution becomes an approximation. Careful assessment of the approximate
theoretical solution indicates that this is su�ciently accurate for use in the construction of
upwind numerical methods. We note here that our theoretical solution is direct, unlike that
presented by Andrianov [9] for the more complicated Baer–Nunziato model. Our Riemann
solver is complete, in that it accounts for all waves present in the eigenstructure of the
exact solution. Our solver is also nonlinear and therefore avoids typical problems of stan-
dard linearized Riemann solvers concerning low-densities �ows, sonic �ows and strong shock
waves.
The second contribution of this paper is the construction of non-conservative

upwind numerical methods that use locally the four-rarefaction Riemann solver. We con-
struct a non-conservative analogue of the Godunov �rst-order upwind method. We also con-
struct second-order nonlinear schemes using the TVD approach and the ENO
approach.
The rest of this article is organized as follows: in Section 2 we review the mathematical

model of Saurel and Abgrall and present two possible formulations for it. In Section 3 we
study the eigenstructure of the system for both formulations and �nd the generalized Riemann
invariants. In Section 4 an approximate Riemann solver is developed. In Section 5 we construct
three upwind numerical methods and in Section 6 we present numerical results and discuss
the performance of the numerical methods, the solutions of which are compared with the
theoretical solution of this paper. Conclusions are drawn in Section 7.
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2. GOVERNING EQUATIONS

In this section we study the isentropic two phase �ow model of Saurel and Abgrall [5] that
governs the dynamics of two compressible �uids (called phases, hereafter), such as gas and
liquid.

2.1. The closed model

The Saurel–Abgrall model [5] for the mixture of two compressible �uids neglecting mass
transfer and drag force, in terms of conserved variables, reads as

@
@t
(�g�g) +

@
@x
(�g�gug) = S1 (1)

@
@t
(�g�gug) +

@
@x
(�g�gu2g + �gpg)− pi @@x�g = S2 (2)

@
@t
(�l�l) +

@
@x
(�l�lul) = S3 (3)

@
@t
(�l�lul) +

@
@x
(�l�lu2l + �lpl) + pi

@
@x
�g = S4 (4)

@
@t
�g + �

@
@x
�g = 0 (5)

Here �k is the volume fraction of phase k, k=g (gas) and k= l (liquid); �k is the density
of phase k; uk is the velocity of phase k, pk is the pressure of phase k, � is an interphase
speed and pi an interphase pressure. Equations (1)–(4) express the laws of conservation
of mass and momentum for each phase. Equation (5) is an advection equation for the gas
volume fraction, where the advection speed is �. As in the article by Saurel–Abgrall [5], the
interphase speed and the interface pressure are de�ned as

�=
∑
�k�kuk∑
�k�k

; pi=
∑
�kpk ; k=g; l (6)

Other possibilities have also been proposed in the last few years, see for example References
[10, 11].
A distinctive feature of system (1)–(5) is that although it is based on the physical con-

servation principles of mass and momentum and it is expressed in terms of the conserved
variables, the mathematical form of (1)–(5) is not conservative, or equivalently, the system
is not in divergence form. Moreover, to our knowledge system (1)–(5) cannot be cast in
conservative or divergence form.
To close system (1)–(5) we need to de�ne the pressures pg, pl via appropriate equations

of state. Here we choose isentropic laws of the form

pg =pg(�g); pl =pl(�l) (7)

In particular for the gas phase we take

pg =pg(�g)=Kg�
�g
g (8)
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where Kg and �g are constants to be speci�ed. For the liquid phase we use the Tait’s [12]
equation of state

pl =pl(�l)=Kl

[(
�l
�o

)�l
− 1

]
(9)

where Kl, �l and �o are constants, also to be speci�ed.

2.2. Formulations

Here we derive two formulations of the governing equations, based on two choices of vari-
ables. Equations (1)–(5) with Si=0 (i=1; : : : ; 4) can be cast in quasi-linear form as

@tQ + A(Q)@xQ=0 (10)

where

Q=[�g�g; �g�gug; �l�l; �l�lul; �g]T (11)

is the vector of conserved variables and the coe�cient matrix A(Q) is

A(Q)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

a2g − u2g 2ug 0 0 pg(1− �g)− pi
0 0 0 1 0

0 0 a2l − u2l 2ul pl(�l − 1) + pi + Kl�l
0 0 0 0 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

which can be easily veri�ed by expanding the spatial derivatives of products and algebraic
manipulations. The matrix contains the sound speeds of both phases

ag =
√
�gpg
�g

al =
√
�l
�l
(pl + Kl)

(13)

An alternative choice of variables, and formulations, is the vector of primitive or physical
variables

W =[�g; ug; �l; ul; �g]T (14)

for which the governing equations take the form

@tW + A(W )@xW =0 (15)
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where the coe�cient matrix is

A(W )=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ug �g 0 0
�g(ug − �)

�g

a2g
�g

ug 0 0
pg − pi
�g�g

0 0 ul �l
�l(�− ul)

�l

0 0
a2l
�l

ul
pi − pl
�l�l

0 0 0 0 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

3. EIGENSTRUCTURE AND GENERALIZED RIEMANN INVARIANTS

In this section we establish the eigenstructure of the systems (10), (15) and derive the gener-
alized Riemann invariants [13]; these will be utilized in Section 4 for �nding an approximate
solution to the Riemann problem. For both formulations (10), (15) the eigenvalues are

�1 = ul − al; �2 = ug − ag; �3 = �; �4 = ug + ag; �5 = ul + al (17)

The corresponding right eigenvectors di�er for each formulation. For the primitive-variable
formulation (15) the right eigenvectors are:

R(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−�l
al

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�g
ag

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�g

ag

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

�l

al

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

R(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
�g

pi − pg + �g(ug − �)2
(ug − �)2 − a2g

− 1
�g�g

(�− ug)(�ga2g − pg + pi)
(ug − �)2 − a2g

1
�l
pi − pl + �l(ul − �)2
(ul − �)2 − a2l

1
�l�l

(�− ul)(�la2l − pl + pi)
(ul − �)2 − a2l

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)
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For the conserved-variable formulation (10) the right eigenvectors are:

R(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

ul − al
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ug − ag
0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ug + ag

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; R(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

ul + al

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

R(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pg(�− 1) + pi
a2g − (ug − �)2

�
pg(�g − 1) + pi
a2g − (ug − �)2

pl(1− �l)− pi − Kl�l
a2l − (ul − �)2

�
pl(1− �l)− pi − Kl�l

a2l − (ul − �)2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

With the eigenvalues and eigenvectors available we establish the nature of the characteristic
�elds associated with each pair (�i; R(i)). For example, the characteristic �eld associated with
�3 = � is seen to be linearly degenerate as

∇�3(W ) · R(3)(W )=0 ∀W (22)

The remaining characteristic �elds are all genuinely non-linear as

∇�k(W ) · R(k)(W ) �=0 ∀W (23)

The generalized Riemann invariants are used to establish useful relations across simple
waves connecting two constant states. Consider an n×n system with unknowns W=[w1 : : : wn]T;
for which given an eigenvalue �k and its corresponding eigenvector

R(k)(W )= [r(k)1 ; : : : ; r
(k)
n ]

T

the corresponding generalized Riemann invariants are [13]

dw1
r(k)1

=
dw2
r(k)2

= · · · = dwn
r(k)n

From here one obtains (n− 1) ordinary di�erential equations in phase space. Now assume
two constant states WL=[�gL; ugL; �lL; ulL; �gL]T and WR=[�gR; ugR; �lR; ulR; �gR]T.
Across the wave family associated with �1 = ul − al we have

d�g
0
=
dug
0
=
d�l
−�l =

dul
al
=
d�g
0
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which gives

2al
�l − 1 + ul = constant (24)

Similarly, across the wave family associated with �2 = ug − ag we have

d�g
−�g =

dug
ag
=
d�l
0
=
dul
0
=
d�g
0

from which we obtain

2ag
�g − 1 + ug = constant (25)

Analogously, for the wave family associated with �4 = ug + ag and �5 = ul + al we, respec-
tively, obtain

2ag
�g − 1 − ug = constant (26)

and

2al
�l − 1 − ul = constant (27)

For the contact discontinuity associated with �3 = � we obtain the following relations:

�∗�g = r
(3)
1 ��g

�∗ug = r
(3)
2 ��g

�∗�l = r
(3)
3 ��g

�∗ul = r
(3)
4 ��g

(28)

where the jumps are

�q= qR − qL; �∗q= q∗
R − q∗

L

with the unknowns q∗
k to be de�ned.

4. AN APPROXIMATE RIEMANN SOLVER

In this section we de�ne the Riemann problem, identify its solution structure and, under the
assumption that all non-linear characteristic �elds are associated with rarefaction waves, we
construct an approximate solution to the Riemann problem. This solution has close form and
is exact when, in addition, the jump in volume fractions is trivial.
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4.1. The Riemann problem

Consider the Riemann problem

@tW + A(W )@xW =0

W (x; 0) =

{
WL; x¡0

WR; x¿0

(29)

where W is the vector of unknowns (14) and the coe�cient matrix A(W ) is given by (16)
with de�nitions (13). The structure of the solution of (29) is depicted in Figure 1.
There are �ve wave families associated, respectively, with the eigenvalues �1; : : : ; �5. There

are six constant regions separated by waves, the nature of which is unknown in advance
except for the contact discontinuity of speed �3 = �, see Equations (5) and (22). Crucial to
�nding a solution to (29) is the determination of the two overlapping star regions either side
of the contact, in which a general unknown is denoted as q∗, see Figure 1. The corresponding
vectors W ∗

L and W ∗
R of unknowns are

W ∗
L =[�

∗
gL; u

∗
gL; �

∗
lL; u

∗
lL; �gL]

T

and

W ∗
R =[�

∗
gR; u

∗
gR; �

∗
lR; u

∗
lR; �gR]

T

Note that from the eigenstructure analysis we know that �g only changes (discontinuously)
across �3 = �. We thus have eight unknowns in the star region.

WR

t

x

(λ3=λ)

WL

(λ1)

(λ2) (λ4)

(λ5)

ρgL
*

ρgR
*

ugL
* ugR

*

ρlL*
ulL*

ρlR*
ulR*

0

Figure 1. Structure of the solution of the Riemann problem for the two-phase
isentropic model of Saurel and Abgrall.
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4.2. The four-rarefaction approximation

Here we �nd an approximate solution by assuming a priori that the four outer waves (non-
linear) in Figure 1 are rarefaction waves. For this reason the approximation may be called
a Four-rarefaction Riemann solver and is an extension of the well known two-rarefaction
approximation for compressible single phase gas dynamics. Obviously, if all non-linear waves
are in fact rarefactions, then the obtained solution is exact. Otherwise, our solution will be
an approximation.
For the liquid phase we assume that WL is connected to W ∗

L via the generalized Riemann
invariants (GRIs) (24), that is

2a∗
lL

�l − 1 + u
∗
lL=

2alL
�l − 1 + ulL ≡ClL (30)

Similarly, the liquid phase in WR is connected to W ∗
R via (27)

2a∗
lR

�l − 1 − u∗
lR=

2alR
�l − 1 − ulL ≡ClR (31)

Analogous relations apply to the gas phase derived from (25) and (26) so that

2a∗
gL

�g − 1 + u
∗
gL=

2agL
�g − 1 + ugL ≡CgL (32)

and

2a∗
gR

�g − 1 − u∗
gR=

2agR
�g − 1 − ugL ≡CgR (33)

Across the contact discontinuity associated with �3 = � relations (28) hold. Considering the
relevant relations for the liquid phase we utilize the third and fourth relations of Equations
(28), (30) and (31) to obtain a single algebraic non-linear equation for the unknown �∗

lL ≡y,
namely

Fl(y)=y�l−1=2 + [r
(3)
3 (�gR − �gL) + y]�l−1=2 − r(3)4 (�gR − �gL) + ClL + ClR

Cl
(34)

Analogous use of the �rst and second relations of (28) and Equations (32) and (33) give
another non-linear equation for the unknown �∗

gL ≡ z, namely

Fg(z)= z�g−1=2 + [r
(3)
1 (�gR − �gL) + z]�g−1=2 − r(3)2 (�gR − �gL) + CgL + CgR

Cg
(35)

The constant Cl and Cg are de�ned as

Cl ≡ 2
√
Kl�l=�

�l
o

�l − 1 ; Cg ≡ 2
√
Kg�g

�g − 1
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If the initial data in (29) has �gL= �gR then Equations (34) and (35) readily yield a close
form solution for the star region

�∗
l =

(
ClR + ClL
2Cl

)2=�l−1

u∗
l =

ClR − ClL
2

�∗
g =

(
CgR + CgL
2Cg

)2=�g−1

u∗
g =

CgR − CgL
2

(36)

We note that in this case there is no jump across the contact discontinuity and W ∗
L =W

∗
R ,

so that

�∗
lL = �

∗
lR ≡�∗

l

u∗
lL = u

∗
lR ≡ u∗

l

�∗
gL = �

∗
gR ≡�∗

g

u∗
gL = u

∗
gR ≡ u∗

g

(37)

We denote this close form solution by W ∗
0 = [�

∗
g ; u

∗
g ; �

∗
l ; u

∗
l ; �g].

For the general case �gL �= �gR, in (29) there is a jump across the contact wave and the
solution W ∗

L , W
∗
R is found by �rst �nding the roots of (34) and (35) numerically via a

Newton–Raphson (NR) method and then use exact wave relations to �nd the complete solution
throughout the wave structure.
Assuming we have computed solutions y and z from (34) and (35), then we have

�∗
lL = y; �∗

gL = z

�∗
lR = r

(3)
3 (�gR − �gL) + �∗

lL; �∗
gR = r

(3)
1 (�gR − �gL) + �∗

gL

u∗
lL =ClL − Cl�∗

lL
�l−1=2; u∗

gL =CgL − Cg�∗
gL
�g−1=2

u∗
lR =−ClR + Cl�∗

lR
�l−1=2; u∗

gR =−CgR + Cg�∗
gR
�g−1=2

(38)

Note that in (38) the �rst and third components of the eigenvector R(3) depend on the
unknowns of the problem. This leads us to various ways of solving the problem approximately.

4.3. Iterative solution

In the presence of a non-trivial contact wave (�gL �= �gR) there will be two distinct regions
either side of the contact, that is W ∗

L �=W ∗
R , see Figure 1.

We have been unable to �nd a close-form solution for this case. We therefore introduce
another level of approximation in order to obtain approximate values for W ∗

L and W ∗
R by

solving iteratively Equations (34) and (35), using as a guess values the closed form solution
W ∗
0 (37). This will be done by a kind of linearization. There are at least two ways of doing
this.
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The simplest linearization is implemented by assuming that r(3)1 ; r
(3)
2 ; r

(3)
2 ; r

(3)
4 in (34) and

(35) are constant and are evaluated at the arithmetic means of their arguments using the
initial conditions, that is

R(3) =R(3)(W̃ ) (39)

where

W̃ = 1
2 (WL +WR) (40)

Another way is to start with

R(3)0 =R
(3)
0 (W

∗
0 ) (41)

where W ∗
0 is given by (37). For iteration k + 1 we set

R(3)k =R
(3)
k (W

∗
k ) (42)

where W ∗
k is an arithmetic mean of W

∗
L and W

∗
R obtained at the kth Newton–Raphson iteration.

There is some �exibility in this approach, as the vector R(3)k could be frozen for the
remaining iterations, saving computational time in this manner.

4.4. Typical theoretical solutions

In what follows we consider some speci�c examples, for which the initial conditions are given
in Tables I–IV.

Table I. Initial conditions for Test 1.

WL �gL ugL �lL ulL �gL
719.6856 −350 1225.8912 −350 0.9

WR �gR ugR �lR ulR �gR
719.6856 350 1225.8912 350 0.9

Table II. Initial conditions for Test 2.

WL �gL ugL �lL ulL �gL
719.6856 −350 1225.8912 −250 0.9

WR �gR ugR �lR ulR �gR
719.6856 350 1225.8912 250 0.1

Table III. Initial conditions for Test 3.

WL �gL ugL �lL ulL �gL
719.6856 150 1225.8912 150 0.9

WR �gR ugR �lR ulR �gR
719.6856 −150 1225.8912 −150 0.9
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Table IV. Initial conditions for Test 4.

WL �gL ugL �lL ulL �gL
719.6856 1000.00 1225.8912 2400.00 0.9

WR �gR ugR �lR ulR �gR
261.5970 2277.81 1028.3588 2774.36 0.9
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Figure 2. Exact solution pro�les for Test 1.

In Test 1 the exact solution consists on four symmetric rarefaction waves and a trivial
contact discontinuity, that is �L= �R. For this case our theoretical solution (37) is exact. See
Figure 2. Test 2 consists of four rarefaction waves and a non-trivial contact discontinuity.
For this example our theoretical solution is iterative and is only an approximation to the
exact solution, which is unknown to us. See Figure 3. Test 3 consists of four symmetric
shock waves (weak) and a trivial contact discontinuity. For this case our theoretical solution
can only be regarded as a crude approximation to the exact solution. First we remark that
the theoretical correctness of shock wave solutions for non-conservative hyperbolic systems
is currently unknown. Our theoretical approximation is based on the star values obtained
from the four-rarefaction assumption and then we have estimated the shock speeds as an
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Figure 3. Approximate solution pro�les for Test 2.

arithmetic mean of the characteristic speeds ahead and behind of the shock. It is surprising
that this theoretical solution appears to be accurate, as veri�ed by independent numerical cal-
culations. See also Figure 11. Test 4 consists of a single rarefaction wave for each phase.
See Figure 14. The point of having chosen this test, for which our theoretical solution (37)
is exact, is that it contains a sonic point, for which numerical methods tend to encounter
di�culties.
In Section 5 we utilize the theoretical solution just described, locally, to construct upwind

methods, and in Section 6 we utilize these theoretical solutions to assess the performance of
numerical methods.
In order to test the sensitivity of the NR iteration process we solved (34), (35) for the

case �gL= �gR, which has closed form solution W ∗
0 (37). We perform numerical experiments

for a variety of guess values. Table V shows the iterative process with a guess value given
by WL. Using a tolerance TOL=10−10 we needed �ve iterations to reach the exact solution.
This assure us that the NR solver works as expected.
Tables VI and VII show the results of the iterative process for Test 2, see Table II. With

initial guess W ∗
0 of Equations (37) and TOL=10−10 one requires 17 iterations to achieve
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Table V. Newton–Rhapson iterative method for Test 1 using W ∗
0 and WL as guess values.

Guess Iterations �∗
gL �∗

lL

W ∗
0 0 556.326373426819 1043.712366756080

WL 0 719.685673001152 1225.891245955086
1 539.085437528560 1070.309619769666
2 556.109954607825 1044.391992046297
3 556.326339745587 1043.712825491585
4 556.326373426818 1043.712366756289
5 556.326373426819 1043.712366756080

Table VI. Newton–Rhapson iterative method for Test 2 with initial guess W ∗
0 .

Guess Iterations �gL �lL

W ∗
0 0 556.326373426819 1102.300274722990

1 467.936108470893 1062.762255129332
2 499.143312440224 1082.603301710746
3 505.307421321565 1087.953568950437
4 503.085390407153 1086.268154757242
5 502.893359547870 1086.101145817396
6 503.090428017176 1086.255866150020
7 503.099999842434 1086.264388588076
8 503.083373932929 1086.251378688327
9 503.083241771857 1086.251181838734
10 503.084617230534 1086.252262815385
11 503.084574708412 1086.252236969768
12 503.084462991198 1086.252148885975
13 503.084470840452 1086.252154440846
14 503.084479743406 1086.252161485132
15 503.084478750262 1086.252160753366
16 503.084478055064 1086.252160201203
17 503.084478163955 1086.252160282988

convergence. We note that other choices of initial guess, such a WL, or WR do not signi�cantly
increase the number of iterations required for convergence, see Table VII.
We also note that for numerical purposes when computing a numerical �ux the approxi-

mate solution obtained after a couple of iterations is su�ciently accurate, in particular in the
numerical results presented in Section 6 the solution obtained with the tolerance TOL=10−6

was su�ciently good.

4.5. The complete solution

In the previous subsections we have obtained exact and approximate solutions for quantities
in the star region. The solution in the rest of the half plane of Figure 1 is obtained by
applying exact waves relations. Figure 2 shows the exact solution pro�les for liquid and gas
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Table VII. Newton–Rhapson iterative method for Test 2 with initial guess WL.

Guess Iterations �gL �lL

WL 0 719.685673001152 1225.891245955086
1 539.085437528560 1114.761512965500
2 486.563771816759 1073.835523325850
3 495.183975812781 1079.136911483718
4 503.448703767244 1086.620103549050
5 503.728042713983 1086.742797532298
6 503.008799654429 1086.197895861312
7 503.034388137897 1086.212178969972
8 503.092541654627 1086.258239352428
9 503.088292276292 1086.255202696258
10 503.083664516826 1086.251541657698
11 503.084195457077 1086.251933468607
12 503.084556260240 1086.252220133637
13 503.084498472983 1086.252176685260
14 503.084470981336 1086.252154747722
15 503.084476813385 1086.252159181866
16 503.084478852580 1086.252160817633
17 503.084478292589 1086.252160388548
18 503.084478146285 1086.252160270407

variables at a given output time of 1:3× 10−4 s. For this example the assumption that the four
nonlinear waves are rarefaction waves is correct and the further assumption �L= �R (trivial
contact) allows us to �nd the analytical solution displayed in Figure 2.
In Figure 3 we display the complete approximate solution to Test 3. Again, the solu-

tion consist of four rarefaction waves, as correctly assumed in the approximation scheme.
However, given the fact that �L �= �R, we must employ an iterative procedure to �nd numeri-
cal values for the variables in the star regions.
The theoretical solution obtained in this section can be used for validating numerical compu-

tations for the two phase �ow model (1)–(5). Moreover, we shall use the relevant information
available from the theoretical solution to implement upwind numerical methods to solve the
general initial-boundary value problem for Equations (1)–(5). This is the subject of the next
section.

5. CONSTRUCTION OF UPWIND NUMERICAL METHODS

In this section we construct upwind numerical methods for solving the complete initial-
boundary value problem for Equations (1)–(5) in the non-conservative forms (10) or (15).
The schemes presented make use of the approximate Riemann solver of Section 4. One of
the methods is the non-conservative analogue of the Godunov �rst-order upwind method. The
other methods considered are second-order accurate in space and time and are non-linear (non-
oscillatory), using total variation diminishing (TVD) and essentially non-oscillatory (ENO)
criteria to control spurious oscillations near large gradients of the solution.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:275–307



290 C. E. CASTRO AND E. F. TORO

The non-conservative schemes are constructed on the basis of an extension of the �nite
volume approach to non-conservative systems [14, 15]. The schemes have the form

Wn+1
i =Wn

i − �t
�x

Âi[Wi+1=2 −Wi−1=2] (43)

where Wn
i is a spatial integral average within volume, or cell, i of length �x, at time level n;

the coe�cient matrix Âi is an approximation to a space–time integral of the coe�cient matrix
of the relevant quasi-linear system within volume i; Wi+1=2 is an intercell state, analogous
to the intercell �ux in conservative methods; �t is the time step, computed from a stability
condition, which for the methods presented here is 0¡Cc�6 1, where Cc� is the usual CFL
or Courant number coe�cient. The second-order schemes are: an ADER second-order scheme
and the MUSCL Hancock scheme.

5.1. A second-order ADER scheme

To construct a second-order ADER scheme [16], we assume a piece-linear reconstruction and
consider the piecewise linear Riemann problem

@tW + A(W )@xW =0

W (x; 0) =

⎧⎪⎪⎨
⎪⎪⎩
WL(x)≡Wn

i +
(x − xi)
�x

�i

WR(x)≡Wn
i+1 +

(x − xi+1)
�x

�i+1

(44)

The solution of this derivative Riemann problem at the interface is expressed as

Wi+1=2(�)=W
(0)
i+1=2(0) + �@tWi+1=2(0) (45)

The leading term is evaluated from the solution of the piecewise constant Riemann problem
with initial data consisting of the boundary extrapolated values from (44). To compute the
second-term we use the Cauchy–Kowalewski method and express time derivatives in terms
of space derivatives. For example, from Equation (15) we write

@tW =−A(W )@xW (46)

and is replaced in Equation (45) obtaining

Wi+1=2(�)=W
(0)
i+1=2(0)− � A(W (0)

i+1=2(0))@xWi+1=2(0) (47)
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The vector V ≡ @xW obeys the linear homogeneous evolution equation

@tV + Â@xV =0 (48)

To �nd V at the interface xi+1=2 we solve the linearized Riemann problem

@tV + Â @xV =0

V (x; 0) =

{
VL ≡ @xWL
VR ≡ @xWR

(49)

The exact solution to this problem is standard

@xW (0)=VL +
∑
�k60

�kR(k) (50)

where R(k) are the right eigenvectors of Âi+1=2, �k are the wave strengths and �k are the
eigenvalues of Âi+1=2. The matrix is taken as

Âi+1=2 =A(W
(0)
i+1=2(0)) (51)

leading to a solution W (1)
i+1=2(0)= @xW (0) and �nally we have

Wi+1=2(�)=W
(0)
i+1=2(0)− �A(W (0)

i+1=2(0)) W
(1)
i+1=2(0) (52)

From this, the intercell state is obtained by taking the integral average

Wi+1=2 =
1
�t

∫ �t

0
(W (0)

i+1=2(0)− �A(W (0)
i+1=2(0)) W

(1)
i+1=2(0)) dt

which integrates exactly to give

Wi+1=2 =W
(0)
i+1=2(0)− �t

2
A(W (0)

i+1=2(0)) W
(1)
i+1=2(0) (53)

which is the ADER interface state to be used in formula (43), where the coe�cient matrix
is taken as

Âi=A
(
1
2
(Wi−1=2 +Wi+1=2)

)
(54)

5.2. The MUSCL Hancock method

In this approach [17] data reconstruction is performed using piecewise linear functions, see
(44), and boundary extrapolated values are evolved by half a time step and then used as
initial data for a piecewise constant Riemann problem. Non-oscillatory properties come from
TVD slope limiters in the data reconstruction. See Reference [8] for more details.
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The piecewise linear reconstruction has boundary extrapolated values

WL
i =W

n
i − 1

2�i ; W R
i =W

n
i +

1
2 �i (55)

where

�i= 1
2 (1 +!)�i−1=2 + 1

2 (1−!)�i+1=2; �i−1=2 =Wi −Wi−1; �i+1=2 =Wi+1 −Wi
with !∈ [−1; 1]. The boundary extrapolated values (55) are evolved thus

�W
L
i =W

L
i +

1
2
�t
�x

Ãi[WL
i −WR

i ]; �W
R
i =W

R
i +

1
2
�t
�x

Ãi[WL
i −WR

i ]

leading to the expressions

�W
L
i =W

n
i − 1

2

[
I +

�t
�x

Ãi

]
�i ; �W

R
i =W

n
i +

1
2

[
I− �t

�x
Ãi

]
�i (56)

where the coe�cient matrix is taken as Ãi=A(Wn
i ).

To compute the intercell state at xi+1=2 we utilize �WR
i and �WL

i+1 as the initial data for a
conventional piecewise constant Riemann problem, leading to the sought solution Wi+1=2, which
is then utilized in the update formula (43); the coe�cient matrix of which has the same form
as for the ADER method, see (54).
A remark is in order, regarding the choice of the coe�cient matrices in, for example (43),

(52) and (53). Since we are dealing with non-conservative systems and non-conservative
methods there is an uncertainty as to the correct solution for shocks. The choice of the
coe�cient matrix could be a factor in determining shock solutions.

6. NUMERICAL RESULTS

The proposed numerical methods are assessed via a number of test problems for which we
can also use the theoretical solutions of this paper to compare with. We consider the four
test problems introduced in Section 4.4, solved on a spatial domain [0; 1], and the initial
conditions of which are given in Tables I–IV. The structure of the exact solution for each of
the test problems is described in Section 4.4. For Tests 1–3 the initial discontinuity in �ow
variable is positioned at x=0:5 and solutions are displayed at time tout = 1:3× 10−4 s. For the
sonic �ow problem, Test 4, the initial discontinuity is positioned at x=0:3 and the solution
is displayed at time tout = 4:0× 10−4 s. The constant used in the equations of state (8) and
(9) are: Kg = 1× 105 Pa, �g = 1:4, Kl = 3:03975× 108 Pa, �l = 7:15, �o=1× 103 kg=m3.
Numerical results are compared with theoretical solutions in Figures 4–16. The CFL coe�-

cient used for each computation is displayed in each of the results. We use the SUPERBEE
limiter for the MUSCL Hancock, whereas for ADER we use piecewise linear ENO recon-
structions.
In the computations we have used the following meshes: M =100, 200 and 800. The �rst

mesh allows us to asses the performance of the method for realistically coarse meshes. The
second mesh allows us to asses the convergence trend of the numerical solutions and the
last mesh allows us to verify that the converged numerical solution is close to the theoretical
solution.
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Figure 4. TEST 1: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =100 cells.
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Figure 5. TEST 1: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =200 cells.
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Figure 6. TEST 1: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =800 cells.
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Figure 7. TEST 2: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =100 cells.
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Figure 8. TEST 2: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =200 cells.
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Figure 9. TEST 2: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =800 cells.
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Figure 10. TEST 2: Numerical results for gas volume fraction (symbols) from three numerical meth-
ods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL

coe�cient used is Cc� = 0:9 and mesh used is M =100 cells.
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Figure 11. TEST 3: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =100 cells.
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Figure 12. TEST 3: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =200 cells.
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Figure 13. TEST 3: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =800 cells.
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Figure 14. TEST 4: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =100 cells.
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Figure 15. TEST 4: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =200 cells.
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Figure 16. TEST 4: Numerical results for liquid density (symbols) from three numerical methods
(Godunov, MUSCL Hancock and ADER) are compared with the theoretical solution (line). CFL coe�-

cient used is Cc� = 0:9 and mesh used is M =800 cells.
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Results for Test 1 for liquid density are shown in Figures 4–6 for three di�erent methods,
namely the non-conservative Godunov �rst-order upwind, the non-conservative MUSCL Han-
cock and the non-conservative ADER. As the mesh is re�ned we observe that the numerical
results appear to converge to the theoretical solution. As expected, the �rst-order method
converges more slowly. For this test problem there are no discontinuities in the solution and
the agreement between the numerical and theoretical solutions is overall very satisfactory.
Results for Test 2 for liquid density are shown in Figures 7–10. For this test problem

there is one discontinuity, namely a contact discontinuity. We observe that this is a more
demanding test for all methods considered. The second-order non-linear methods still show
some degree of spurious oscillations and even on the �nal mesh it is clear that the converged
solution has not yet been reached. The reconstruction and limiting is performed component
wise using physical variables. Characteristic limiting should improve the second-order results.
Figure 10 shows separate results for the volume fraction, which changes only (discontinuously)
across the contact discontinuity. For this quantity the performance of the numerical method
is very satisfactory, the discontinuity is sharp and there are no spurious oscillations. The
volume fraction positivity is always an important issue when it comes to numerical computa-
tions. At the �rst-order level, our �rst-order scheme preserves positivity. At the higher order
level we utilize non-linear schemes, such as TVD schemes (or ENO or WENO schemes).
Our experience is that positivity is preserved in all cases considered. See, for example
Figure 10.
Results for Test 3 for liquid density are shown in Figures 11–13. This test problem consist

of four shock waves (weak) and a trivial contact discontinuity. The theoretical solution is not
strictly valid. However, it is remarkable to see the good agreement between the numerical and
theoretical solutions. The second-order non-linear methods are free from spurious oscillation
and the discontinuities are well resolved.
Results for Test 4 for liquid density are shown in Figures 14–16. This test problem has

been constructed so that the solution consists of a single, isolated, rarefaction wave with
a sonic point, for which the theoretical solution is exact. The point of this test is that sonic
�ows create di�culties to numerical methods, requiring special entropy �xes for some well
known numerical schemes, particularly those based on linearized Riemann solvers. It is seen
that the analogue of the Godunov �rst-order upwind method shows the typical entropy glitch.
This is more evident in the coarse mesh, see Figure 14. As expected, the entropy glitch tends
to disappear as the mesh is re�ned, see Figure 16. The second-order results do not seem to
be a�ected by the presence of the sonic point.

7. SUMMARY AND CONCLUSIONS

We have presented a direct theoretical solution to the Riemann problem for the �ve-equation
two-phase non-conservative model of Saurel and Abgrall and have then utilized this solu-
tion in the construction of upwind non-conservative methods to solve the general initial-
boundary value problem for the two-phase �ow model in non-conservative form. The basic
upwind scheme constructed is the non-conservative analogue of the Godunov �rst-order up-
wind method. Second-order methods in space and time have then been constructed via the
MUSCL and ADER approaches. The methods have been systematically assessed via a se-
ries of test problems with theoretical solutions. The theoretical solution given is thus used in
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two ways (i) as a reference solution to assess the accuracy of numerical methods for some
special test problems, and (ii) to construct upwind numerical methods to solve more general
problems.
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